
OL_QOIE
QOI Imge Compressor

Core 
User’s Manual Rev 1.0

Core version 1.0 

Overview

Applications

Features

Symbol

This core implements the QOI lossless image compression algorithm 
producing a raw, header-less file. Simple, fully synchronous design 
with low gate count.

 Bandwidth and storage reduction.
 Lossless compressed frame store.
 Space imaging applications.
 SoC to SoC image transmission.

 Implemented according to the QOI image format.
 Processes one 24 bits pixel per clock cycle.
 High throughput : up to 800 Mpixles/s in high end, 4K@30 in low 

end FPGAs.
 Optional header processing available.
 Fully synchronous design.
 Available as fully functional and synthesizable VHDL or Verilog 

soft-core.
 Test benches provided.

Ocean Logic Pty Ltd 1

mailto:4K@30
https://qoiformat.org/qoi-specification.pdf


The QOI Lossless Image Compression Algorithm

QOI stands for Quite OK Image Format and it is a fast, simple lossless image compression 
algorithm.

As it can be seen in these benchmarks, the performance of the algorithm is usually somewhere in
between two well known image compression libraries (like libpng and stb) but at a much lower 
computational cost.

QOI uses a combination of some well known image compression techniques and innovative 
ideas.
Pixels are compressed as:

 runs of identical pixels
 an index to a 64 pixel cache of previously encountered pixels
 a difference to the previous pixel
 a full RGB pixel

The QOI algorithm is an excellent compromise between compression performance and low 
algorithmic complexity.

QOI Lossless Image Compression Core

OL_QOIE is a fast, low complexity implementation of the compression algorithm that accepts one
24 bits RGB pixel per clock cycle and outputs compressed data packed in 32 bits words.

Pin Description
Name Type Description
RSTN Input Core asynchronous reset, active low.
CLK Input Core clock signal.
EN Input Synchronous enable signal. When LOW operations stall and

the core ignores all its inputs.
START Input When HIGH, compression operation is started.
R[7:0] Input Red component of the input pixel.
G[7:0] Input Green component of the input pixel.
B[7:0] Input Blue component of the input pixel.
LASTI Input When HIGH, it signals the last input pixel.
REQ Output When HIGH, a new pixel is requested.

DOUT[31:0] Output Output data.
VALID[3:0] Output Output data valid. Each bit, when HIGH, it indicates the 

valid byte in the output data.
LASTO Output When HIGH, it indicates the last compressed data.

Functional description

Rising the START input for one clock cycle activates the core. After 62 cycles, used by the core to
initialize the pixel cache, the core will raise the REQ output, accepting one RGB pixel form then 
on, without any gaps.

https://cppget.org/stb_image?f=full&q=library
https://en.wikipedia.org/wiki/Libpng
https://qoiformat.org/benchmark/


If a pixels cannot be provided when the core requests it, then the EN signal must be lowered. 
This will stall the core as long as EN is LOW. Likewise for the output, if not ready to accept 
compressed data being output.

When limited to RGB, the QOI algorithm can output from 1 to 4 bytes for each input pixel. 
Therefore, in order to guarantee accepting one pixel input per clock cycle, the core will pack the 
compressed data in 32 bit words. The core will output a 32 bit word from DOUT[31:0] as soon as
at least 4 bytes are accumulated internally. This will be indicated by raising the VALID[3:0] 
output.

The last pixel fed to the core must be indicated by raising the LASTI signal. As shown above, as 
soon as the last pixel has been clocked in the REQ signal will be lowered.
Depending on the amount of compressed data that needs to be flushed out, it can take up to 9 
cycles for the last 32 bit word to be output. This will be indicated by the LASTO output going 
HIGH. For the last output data, each bit of the VALID[3:0] output will also indicate which byte of 

Figure 1: Start core operations.

Figure 2: Last pixels input and last compressed data output.



the DOUT[31:0] is actually valid. This is because the QOI format is byte aligned and the last 
output might not necessarily contain 4 bytes. Specifically, bit 3 of VALID[3:0] will indicate that 
bits 31:24 of DOUT[31:0] are valid, bit 2 that bits 23:16 are valid and so on.

C Model and test vectors generation 

A C model of the core is provided for test vector generation. The C model provided is based on a 
the reference implementation, located on GitHub and included in the deliverable in the qoi-
master/ directory.

The test vector generators, qoie.c is also provided. 
In order to compile this program, make sure that the qoi.h file from the qoi-master/ directoryis
visible by the c compiler.
The test vector generator qoie.c is compiled with : 

gcc –o qoie image-io.c qoie.c

The resulting qoie executable usage is:

./qoie <input image in PPM format> <output image in QOI format>

Example :
./qoie image.ppm image.qoi

The resulting image.qoi file is a raw QOI (without header) binary file.
Two other utilities are also provided bin2hex32.c and ppm2hex.c .
They can be compiled with:
gcc -o bin2hex32  bin2hex32.c
gcc -o ppm2hex  ppm2hex.c

bin2hex32.c is used to convert the binary QOI file into a hex text file suitable for the testbench.
Example :
./bin2hex image.qoi qoi.dat

Likewise, ppm2hex is used to convert the PPM image file into a hex text file suitable for the 
testbench.
Example :
./ppm2hex image.ppm pixel.dat

The hex text files qoi.dat and pixel.dat can then be moved to the testbench directory to be used 
by the simulation.

It is possible to also use qoie to generate a QOI binary file that includes the QOI header, 
suitable for viewing by using the -h option.
Eample :
./qoie image.ppm image.qoi -h

In the Windows environment the free Irfanview can be used to view QOI files. The -h option 
should not be used to generate files for the testbench as this version of the core does not 
generate an header.

https://www.irfanview.com/


Test bench

The directory tb contains the HDL file tb.v(hd). This files represents the self-checking test 
benches provided with the core.
The figure below shows a block diagram of the test bench.

Figure 3 Test bench block diagram.

The Stimulus Process reads the input vectors and passes them to the core. The core results are 
verified by the Checking Process.

The testbench reads the pixels form the pixel.dat file and feeds them to the OL_QOIE core. It 
also verifies that the output matches the qoi.dat file.

Ocean Logic Pty Ltd
PO BOX 768 - Manly NSW 1655 - Australia

URL:  http://www.ocean-logic.com/

http://www.ocean-logic.com/

	Overview
	Applications
	Features
	Symbol
	The QOI Lossless Image Compression Algorithm
	QOI Lossless Image Compression Core
	Pin Description
	Functional description
	C Model and test vectors generation
	Test bench

