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Abstract 
 
The hardware implementation of the emerging H.264/AVC video compression standard 
presents a number of difficult challenges when it comes to real-time encoding at HDTV 
rates. This paper describes an efficient implementation of a baseline H.264/AVC encoder 
core capable of encoding a 1920x1080 video stream in real time at 30 frames per second 
(HDTV 1080p). A very favorable comparison with the JM 8.6 software reference model 
also will be presented. While the specific target of the design was HDTV 1080p, the 
small size and low clock frequency required make this core suitable for a variety of 
applications, from mobile communication devices to HDTV camcorders and video 
surveillance systems.  
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Introduction 
 
The hardware implementation of the emerging video encoding standard known as 
H.264/AVC1 presents a number of difficult challenges. We discuss the issues surrounding 
the design of a baseline H.264/AVC encoder core capable of processing up to HDTV 
1080p (1920x1080) at 30 fps. We start with a brief outline of the baseline H.264 
algorithm and discuss the features and capabilities of the core. We then examine some of 
the challenges in implementing these features. Finally, we show the performances of the 
core in terms of gate count as well as PSNR comparisons with the JM software reference 
model. 
 
The Baseline H.264/AVC Algorithm 
 
The Baseline H.264/AVC algorithm is quite complex, and we will briefly outline the 
process and information flow during encoding in order to understand the implementation 
issues that face hardware designers. 
 
H.264 Baseline encoding can be essentially divided into a series of processing steps for 
each 16x16 pixel macroblock in the source video frame. We will focus only on the subset 
of the H.264 Baseline algorithm features that we have supported. A data flow diagram is 
shown below. 

 
Figure 1. H.264 encoder dataflow 

The initial step is the generation of a prediction. The baseline H.264 encoding algorithm 
uses two kinds of prediction: intra prediction (generated from pixels already encoded in 
the current frame) and inter prediction (generated from pixels encoded in the previous 
frames). 
 



A residual is then calculated by performing the difference between the current block and 
the prediction. The prediction selected is the one that minimizes the energy of the 
residual in an optimization process that is quite computationally intensive. 
 
A linear transform is then applied to the residual. Two linear transforms are used: 
Hadamard and a transform derived from the discrete cosine transform (DCT). 
 
The coefficients resulting from the transformations are then quantized, and subsequently 
encoded into Network Abstraction Layer (NAL) units. These NALs include context 
information—such as the type of prediction—that is required to reconstruct the pixel 
data. The NAL units represent the output of the baseline H.264 encoding process. 
 
Meanwhile, inverse quantization and transform are applied to the quantized coefficients. 
The result is added to the prediction, and a macroblock is reconstructed. An optional de-
blocking filter is applied to the reconstructed macroblocks to reduce compression 
artifacts in the output. The reconstructed macroblock is stored for use in future intra 
prediction and inter prediction. Intra prediction is generated from unfiltered reconstructed 
macroblocks, while inter prediction is generated from reconstructed macroblocks that are 
filtered or unfiltered. 
 
The next subsections detail several of the steps just described. 
 
Intra Prediction 
As mentioned above, intra prediction is formed from pixels that were previously encoded. 
Two kinds of intra predictions are used: intra16x16 and intra4x4. 
 
In intra16x16, all the pixels already encoded at the boundary with the current block can 
be used to generate a prediction. These are shown shaded in the figure below. The core 
can generate the four modes of the intra16x16 prediction. In intra4x4, 16 4x4 blocks of 
prediction are generated from the pixels at the boundaries of each 4x4 prediction block as 
shown in Figure 2, Boundary pixels used in intra16x16 and intra4x4 intra prediction 
modes. For clarity, only some of the pixels in the prediction are shown. The core supports 
all the intra4x4 modes, with the exception of modes 3 and 7. 
 

 
Figure 2. Boundary pixels used in intra16x16 and intra4x4 intra prediction modes 



Inter Prediction 
The inter prediction is generated from motion estimation. Motion estimation is at the 
heart of all standard video compression algorithms. This technique is used to exploit the 
temporal redundancy present in natural video sequences. 
 
Motion estimation is performed by searching for a 16x16 area of pixels in a previously 
encoded frame so that the energy of the residual (difference) between the current block 
and the selected area is minimized. The selected area is indicated by a motion vector. 
Figure 3 illustrates this process.  
 

 
Figure 3. Inter prediction 

The core will search an area 32x32 pixels wide, down to ¼ pixel of resolution (-16.00, 
+15.75 in both X and Y direction). Pixels at ¼ resolution are generated with a complex 
interpolation filter described in the ITU-T H.264 specification. 
 
Transform and quantization 
As mentioned above, two types of transforms are used in the baseline H.264 encoding 
algorithm: the Hadamard transform and an integer transform derived from the DCT. 
 
The full definitions of these transforms can be found in the ITU-T H.264 standard. The 
important thing to notice here is that both transforms (and their inverse functions) can be 
performed by using only additions, subtractions and shift operations. 
 
Both quantization and its inverse are also relatively simple and are implemented with 
multiplication and shifts. 
 



NAL encoding 
The core generates the NAL types shown in the following table. 
 

NAL Unit Type Description 
1 Coded slice of a non-IDR picture. 
5 Coded slice of a IDR picture. 
7 Sequence Parameter Set. 
8 Picture Parameter Set. 

Table 1. NAL Unit types 

H.264 encoding can be essentially divided into two independent processes: motion 
estimation and compensation, and variable length encoding. The resultant bitstream is 
assembled into NAL units and output in byte stream format as specified in Annex B of 
the ITU-T H.264 specification. 
 
 
Core features 
 
The objective of our design was an IP core that would satisfy the needs of as many 
potential customers as possible. The requirements of different customers are often in 
conflict, and the attempt to reconcile the different requirements results in an interesting 
constrained optimization problem. 
 
We have focused our design efforts on producing a general-use core that has acceptable 
performance for a range of products, from mobile devices to high-end video surveillance 
and “industrial” video quality HDTV camcorders. 
 
The following features of the core are the result of the compromise between encoding 
performance and resources required to implement such a core in silicon. Most of the 
features are subsequently discussed. 

•  Baseline Profile, but encoded bitstream can be decoded by Main Profile decoder 
(for use with high-resolution devices). 

•  Supports up to Profile level 4.1, the highest HDTV video resolution (1920x1080 
@ 30 fps progressive). 

•  Very low operational frequency: from ~1.5 MHz for QCIF @ 15 fps to ~250 MHz 
for 1920x1080 @ 30 fps. 

•  No CPU required for encoding. 
•  Variable Bit Rate (VBR) and Constant Bit Rate (CBR). 
•  Very low latency in VBR (~1.1 ms for VGA @ 30 fps). 
•  External memory interface tolerant of high latencies and delays, ideal in a system 

on chip (SoC) or when using a shared bus with a CPU.  
•  Motion vector up to –16.00/+15.75 pixels (search area is 32x32-pixel wide down 

to quarter pixel). 
•  Support for most of the intra4x4 and all intra16x16 modes. 
•  Support for multiple slices for better error resilience. 
•  Block skipping logic for lower bitrate. 



•  A deblocking filter for better quality. 
•  A simple, fully synchronous design. Implemented as fully functional and 

synthesizable VHDL or Verilog soft-core suitable for a variety of technologies 
from low end FPGAs to submicron ASIC. 

 
Very Low Clock Frequency and HDTV Support 
HDTV support up to 1080p at 30 fps was one of the main objectives of the design. With 
the increasing capabilities and the falling cost of high resolution image sensors, encoding 
support for HDTV resolutions will become more and more important. 
 
In order to achieve this at a reasonable frequency, the core has been designed to process a 
16x16 block of pixels every 1024 cycles at an average rate of one pixel every 4 clock 
cycles. An example of the relationship between clock frequency and some common 
resolutions and frame rates is shown in the table below. 
 

Resolution QCIF 
@ 15 fps 

CIF 
@ 30fps 

VGA 
@ 30fps 

1280x720 
@ 30fps 

1920x1080 
@ 30fps 

Core freq. ~1.5 MHz ~12.1 MHz ~36.8 MHz ~110.5 MHz ~250.6 MHz 

Table 2. Core frequency versus video resolution and frame rate. 

Very low clock frequency also means very low power, especially at VGA and CIF 
resolutions. 
 
No CPU required 
The core is an independent entity capable of encoding a video stream without the support 
of an additional CPU. This can be a distinctive advantage as it generally reduces power 
consumption, gate count and licensing cost.  
 
The core does have registers that need setting, but this can be done by other means and, 
in any case, this does not require any computational capability to speak of. 
 
Support for both VBR and CBR 
The core supports both VBR (Variable Bit Rate) and CBR (Constant Bit Rate) encoding. 
 
In VBR mode, the encoded video quality is determined by a fixed quantisation parameter. 
While the video quality is fixed, the encoded bit rate will vary depending on the 
complexity of the incoming video. In CBR mode, the quantisation parameter is varied to 
maintain a constant average bit rate. This allows the core to be used in a variety of 
applications where the bandwidth is fixed, such as for wireless devices. Again, by 
providing both VBR and CBR we are trying to offer maximum flexibility. 
 
In VBR mode the latency of the core is very low. Basically, by the time 16 lines of pixels 
have been input (just enough data to be able to form the first 16x16 block of pixels), the 
core can start encoding, outputting bitstream data a few thousand cycles later. For VGA 
@ 30 fps the time to input 16 lines of pixels is approximately 1.1 ms.  
 



Flexible Memory Interface 
The core needs an external memory to store the previous frame and the current frame 
being reconstructed. Also, chances are that it will be used in a SoC environment where 
other cores and a CPU might need to share the same resource. 
 
We therefore designed the core with that goal in mind. The characteristics of the memory 
interface are: 

•  Very similar to and easy to integrate with the AMBA™ AHB interface 
•  Tolerant of high latencies and delays typical of shared buses 
•  SDRAM aware 
•  Can be clocked at a different clock speed from the main core 

 
The external memory interface can be easily interfaced to the AMBA AHB with a 
minimal amount of extra logic. This will greatly facilitate core integration in an SoC 
environment. 
 
The interface is also designed to be tolerant of latencies and delays typical of a shared 
bus. Basically, as long as a request is satisfied within 800 to 900 cycles of it being made, 
the core will operate correctly. 
 
The external memory is likely to be, in many cases, a type of SDRAM rather than 
SRAM. Consequently, we have designed the core to cater to that eventuality.  
 
One of the characteristics of SDRAM is for the memory to behave essentially like a 
SRAM provided that accesses are confined within a page. Only when crossing a page 
boundary will the penalty of extra cycles be incurred due to precharge. Therefore the core 
sorts all its memory accesses in a way that minimizes page boundary crossings, achieving 
performance closer to one that would be obtained if it was connected to SRAM. 
However, in order for this to work, the memory controller must be able to postpone 
precharging as long as accesses are confined to the same page. 
 
The core will make a total of up to 404 read and 192 write accesses to the external 
memory in the course of 1024 cycles, about 58% of the total number of cycles available. 
 
If the SDRAM controller follows the guidelines mentioned above, the maximum number 
of precharges required across 1024 cycles is 25 (15 for the read operations and 10 for the 
write operations). In this case, assuming an overhead of 4 cycles for each read precharge 
and 5 cycles for each write precharge, the total number of cycles is 596+15*4+10*5=706 
cycles, about 69% of the total number of available cycles. 
 
Finally, the external memory interface can be clocked at a different frequency from the 
main core. This again will assist integration in a variety of situations. 
 
For example, the core could be used in an SoC in association with a CPU that uses a 200 
MHz bus and memory system. Assuming that encoding VGA @ 30 fps is needed in such 
an application, the core can run at just 37 MHz. 
 



If the memory interface was not capable of running at a different clock speed from the 
rest of the core, the whole core would be forced to run at 200 MHz, resulting in an 
unnecessarily greater gate count. 
 
Another example is the encoding of two 4-CIF (704x576) video sources at 30 fps in a 
low-end FPGA. This can be achieved by instantiating two cores and, by clocking the 
memory interface at a different speed. The external memory can then be shared between 
the two cores, as shown below. 
 

 
Figure 4. Two cores sharing memory at different clock frequencies 

Other Baseline Features 
The motion search area is limited to a single frame, +/-16 pixels down to ¼ pixel 
resolution and with a single 16x16 partition. This represents a good compromise between 
gate count and required bandwidth. Search in the subpixel area is done using the complex 
2D filter specified by the encoding algorithm in order to generate the half pixels. 
 
Intra prediction includes all intra16x16 and all intra4x4 modes with the exception of 
modes 3 and 7. 
 
Other features include block skipping for lower bit count and multiple slice encoding for 
error resilience. Finally the deblocking filter is also used in order to improve image 
quality at low bit rates. 
 
Technology Independence 
The core is implemented as VHDL or Verilog RTL. It is also fully synchronous, with no 
gated clocks and transparent latches. This allows the same code to be ported virtually 
unchanged between various technologies from FPGAs to ASIC. 



 
Design Challenges 
 
Processing a 16x16 block of pixels in just 1024 cycles represents a considerable 
challenge. Some features of the H.264/AVC algorithm are particularly unsuitable to 
simple and fast hardware implementation. 
 
We will now discuss some of the issues relating to the hardware implementation of the 
features previously described. 
 
Motion Estimation 
The motion estimation submodule of the core consists of two stages: integer pixel motion 
estimation followed by a refining step that searches for matches down to ¼ pixel 
resolution. 
 
The integer search unit is relatively simple. It utilizes a 4 step search and sums of 
absolute difference (SAD) process to estimate the motion vector. Its performance is quite 
close to a full search. Most of the complexity in this unit comes from minimizing the 
number of accesses to the external memory. 
 
A greater challenge is to generate the half-pixel samples to refine the search within the 
1024 cycles allotted for each block. The complexity lays not so much in the 
computational difficulty (the interpolation filter is quite simple), but rather in minimizing 
the number of multi-port memories that a straightforward implementation would suggest. 
 
Intra Prediction 
Similar to the case of motion estimation, SADs are used to search for the intra prediction 
mode that best matches the current block of pixels. 
 
While the implementation of all the intra16x16 prediction modes is fairly straightforward, 
searching the intra4x4 modes requires extra complexity. This is because the various 
intra4x4 predictions need samples from the neighbouring blocks. Since the neighbouring 
pixels must be identical to those available for the decoder, it follows that each 
neighboring block must have gone through transformation, quantization and their inverse. 
These operations add a considerable burden since they are speculative and, for example, 
if motion estimation produces a better match, they will have to be performed again. 
 
Transform, Quantization and their Inverse 
Given the required speculative execution of the transform, quantization and their inverse 
required for the intra4x4 modes as well as the general high-speed requirement, it would 
seem that a pipelined implementation of these elements would be desirable.  
 
Unfortunately a straightforward pipelined implementation is not possible since for 
intra16x16 mode, the Hadamard transform of all the DC values is also required. All the 
DC values from the direct transform need to be processed first, preventing a straight 
passage to an inverse transform through pipeline architecture. 
 



NAL Encoding 
Each NAL unit contains context information about the type of prediction, motion vectors, 
Quantisation Parameter delta, and the Context Adaptive Variable Length Coded 
(CAVLC) luma and chroma coefficients. To maintain synchronization with the rest of the 
processing in the core, the NAL encoding logic is also constrained to encode this 
information for each macroblock in 1024 clock cycles. The other constraint is that the 
width of the bytestream-format encoded output be no greater than 32 bits to avoid 
problems connecting to external memories or buses. As the core outputs bytestream 
format, it also has to insert the emulation prevention byte. This possibility further restricts 
the bus width into the bytestream formatter to 16 bits. 
 
In the majority of cases, most of the encoded bits in each macroblock are devoted to the 
CAVLC coefficients. CAVLC coding operates on 4x4 blocks and scans the coefficients 
in zig-zag order. Each 4x4 block comprises the following elements: 

•  the number of non-zero coefficients 
•  number of trailing ones (up to 3) 
•  sign of each trailing one (up to 3) 
•  the level code of each non-zero coefficient 
•  the zero run code preceding each non-zero coefficient 

 
In the worst case, 16 non-zero coefficient levels have to be coded followed by 16 runs of 
zero. With each level code being a maximum of 27 bits for Baseline profile, it will 
require 2 clock cycles to be coded due to the 16-bit output constraint. This adds up to a 
maximum of 768 clock cycles just for the level codes of the 16x16 luma, and two 8x8 
chroma blocks. With 256 cycles left to encode the zero-run codes and context 
information, it was necessary to devise an efficient way of coding this information. 
 
External Memory interface 
As mentioned before, the external memory interface of the core is designed to be tolerant 
of the unpredictable latencies and delays typical of a shared bus. This is achieved by 
designing the core in such a way that any memory access is known almost 1024 cycles 
before the data is actually needed. 
 
This in turns allows posting requests to the external memory long in advance. Another 
consequence of this is that all the memory operations are fairly decoupled from the main 
core, and can easily operate at the different clock speed. In other words, the minimal 
interaction between the main core and its memory operations simplifies the asynchronous 
operations. 
 
 
Performance 
 
In this section we show the results of some comparisons between the core and the JM 
reference software2. We also present the results of the implementing the core in various 
technologies. 
 



Comparison to the JM Software Model 
A comparison was made between the C-model of the core and the JM reference software, 
for encoding the sequences listed in the table below. All the sequences are in YUV 4:2:0 
format. 
 

Sequence name Frame size Num of frames File size (bytes) 
Mobile 352 x 288 300 45,619,200 

Tempete 352 x 288 260 39,536,640 
Tennis 720 x 480 300 155,520,000 

Table 3. The sequences used in the test 

All the frames of the sequences listed are encoded using both encoders. Only the first 
frame is encoded as an “I” frame. The file size reported includes the complete encoded 
sequence, including any headers and the first “I” frame. A single reference frame is used. 
 
During the tests, in the JM 8.6 software, all the inter-search partitions are activated 
(16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4), rd optimization is off and the normal (non 
Hadamard) SAD is used.  
 
Tests are conducted with various quantization values, and the deblocking filter enabled or 
disabled.  We only present here the results for the deblocking filters disabled. 
 
The resulting bitstreams are decoded using the JM reference software decoder. The 
PSNR and file size is recorded and reported. 
 
The test results are listed in the tables and graphs below. File sizes are in bytes and PSNR 
in dB. The results are also shown as PSNR/size graphs. 
 

Qp PSNR Y PSNR U PSNR V File Size 
15 45.062 45.591 45.623 10,125,736 
20 40.451 41.461 41.45 6,228,176 
25 36.227 37.807 37.712 3,614,870 
30 31.63 34.826 34.634 1,670,053 
35 27.516 32.323 32.016 657,534 

Table 4. JM 8.6 figures for the Mobile sequence 

 
Qp PSNR Y PSNR U PSNR V File Size 
15 44.991 45.586 45.619 10209836 
20 40.393 41.443 41.434 6439912 
25 36.135 37.767 37.684 3792762 
30 31.553 34.797 34.599 1826485 
35 27.46 32.313 31.984 766506 

Table 5. Ocean Logic core figures for the Mobile sequence 



Figure 5. PSNR comparison for the Mobile sequence 

 
Qp PSNR Y PSNR U PSNR V File Size 
15 45.327 45.897 46.112 7,536,704 
20 40.947 42.013 42.679 4,350,291 
25 36.937 38.757 39.988 2,405,596 
30 32.628 36.292 37.978 1,052,044 
35 28.89 34.299 36.304 419,850 

Table 6. JM 8.6 figures for the Tempete sequence 

 
Qp PSNR Y PSNR U PSNR V File Size 
15 45.265 45.951 46.193 7477296 
20 40.909 42.058 42.78 4510059 
25 36.868 38.772 40.049 2549262 
30 32.549 36.273 38.026 1183653 
35 28.737 34.265 36.332 503588 

Table 7. Ocean Logic core figures for the Tempete sequence 



Figure 6. PSNR comparison for the Tempete sequence 

 
Qp PSNR Y PSNR U PSNR V File Size 
15 45.213 46.405 46.992 26,855,138 
20 40.804 43.759 44.338 12,717,310 
25 37.115 41.576 41.605 4,683,891 
30 33.745 39.715 39.367 1,786,854 
35 30.712 38.062 37.399 731,041 

Table 8. JM 8.6 figures for the Tennis sequence 

 
Qp PSNR Y PSNR U PSNR V File Size 
15 45.199 46.641 47.478 25581040 
20 40.846 43.847 44.493 13565541 
25 37.086 41.624 41.697 5318030 
30 33.876 39.784 39.452 2247988 
35 30.971 38.206 37.565 1043761 

Table 9. Ocean Logic core figures for the Tennis sequence 



Figure 8. PSNR comparison for the Tennis sequence 

 
ASIC and FPGA Synthesis Results 
Synthesis results in various technologies demonstrate that the core is suitable for a wide 
range of applications from mobile phones to “industrial” video quality HDTV and high-
resolution video surveillance. 
 
Different technologies cover different resolutions and frame rates: 

•  4CIF (704x576) at 30 fps with low end FPGAs (Xilinx™ Spartan3 and Altera™ 
CycloneII) 

•  720p (1280x720) at 30 fps with high end FPGAs (Xilinx™ Virtex4 and Altera™ 
StratixII) 

•  1080p (1920x1080) at 30 fps with 0.13um ASIC 
 
Representative results for the design without CBR and the deblocking filter and for 
various technologies are in the table below. 
 



Technology Approx Area Speed Video Throughput 
0.13 u LV 

0.9V, 125 C 
178 Kgates + 106 Kbits RAM 

Optimized for speed ~ 250 MHz 1920x1080 (1080p) @ 30 fps 

0.18 u slow 
process 

129 Kgates + 106 Kbits RAM 
Optimized for area ~50 MHz 4 CIF (704x576) @ 30 fps 

StratixIIC3 17511 ALUTs + 5 M512 + 51 M4K 
+ 3 DSPs ~118 MHz 1280x720 (720p) @ 32 fps 

CycloneIIC6 18,510 M4K + 5 M512 + 51 M4K 
+ 3 DSPs ~65 MHz 4 CIF (704x576) @ 40 fps 

Virtex4-12 10,500 slices + 3 multipliers 
+ 33 RAM blocks ~110 MHz 1280x720 (720p) @ 30 fps 

Spartan3-4 10,500 slices + 3 multipliers 
+ 33 RAM blocks ~50 MHz 4 CIF (704x576) @ 30 fps 

Table 10. Implementation results for the H.264 core 

 
 
Conclusion 
 
The authors have implemented a very fast and small real-time baseline H.264/AVC core 
suitable for a variety of applications. The core’s support for the highest HDTV resolution, 
1920x1080 @ 30 fps progressive opens a whole new range of applications from high-end 
video camcorders to high-resolution video surveillance at very low cost. 
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